Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(8)2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37627233

RESUMO

The vast pool of structurally and functionally distinct secondary metabolites (i.e., natural products (NPs)) is constantly being expanded, a process also driven by the rapid progress in the development of analytical techniques. Such NPs often show potent biological activities and are therefore prime candidates for drug development and medical applications. The ethyl acetate extract of the tuber of Citrullus naudinianus (C. naudinianus), an African melon with edible fruits and seeds, shows in vitro immunomodulatory activity presumably elicited by cucurbitacins that are known major constituents of this plant. Further potentially immunomodulatory cucurbitacins or cucurbitacin derivatives were assumed to be in the tuber. Given the typically high content of cucurbitacins with similar physicochemical features but often distinct bioactivities, an efficient and reliable separation process is a prerequisite for their detailed characterization and assessment in terms of bioactivity. We therefore developed a detection method to screen and differentiate cucurbitacins via high-performance liquid chromatography/quadrupole-time-of-flight tandem mass spectrometry (HPLC-QTOF-MS/MS). In order to confirm the identification, the fragmentation patterns of two cucurbitacins and one 23,24-dihydrocucurbitacin were also investigated. Six characteristic fragments were identified and three of them were employed for the identification of cucurbitacins and 23,24-dihydrocucurbitacins in the extract. As a result, in addition to eight previously reported cucurbitacins from this plant four distinct 23,24-dihydrocucurbitacins (B, D, E, and I) were putatively identified and newly found in the ethyl acetate extract of the tuber of C. naudinianus. The established methodology enables rapid and efficient LC-MS-based analysis and identification of cucurbitacins and 23,24-dihydrocucurbitacins in plant extracts.


Assuntos
Produtos Biológicos , Citrullus , Cucurbitacinas , Espectrometria de Massas em Tandem
2.
Cells ; 12(8)2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37190010

RESUMO

Clear cell renal cell carcinoma (ccRCC) accounts for ~75% of kidney cancers. The biallelic inactivation of the von Hippel-Lindau tumor suppressor gene (VHL) is the truncal driver mutation of most cases of ccRCC. Cancer cells are metabolically reprogrammed and excrete modified nucleosides in larger amounts due to their increased RNA turnover. Modified nucleosides occur in RNAs and cannot be recycled by salvage pathways. Their potential as biomarkers has been demonstrated for breast or pancreatic cancer. To assess their suitability as biomarkers in ccRCC, we used an established murine ccRCC model, harboring Vhl, Trp53 and Rb1 (VPR) knockouts. Cell culture media of this ccRCC model and primary murine proximal tubular epithelial cells (PECs) were investigated by HPLC coupled to triple-quadrupole mass spectrometry using multiple-reaction monitoring. VPR cell lines were significantly distinguishable from PEC cell lines and excreted higher amounts of modified nucleosides such as pseudouridine, 5-methylcytidine or 2'-O-methylcytidine. The method's reliability was confirmed in serum-starved VPR cells. RNA-sequencing revealed the upregulation of specific enzymes responsible for the formation of those modified nucleosides in the ccRCC model. These enzymes included Nsun2, Nsun5, Pus1, Pus7, Naf1 and Fbl. In this study, we identified potential biomarkers for ccRCC for validation in clinical trials.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Animais , Camundongos , Carcinoma de Células Renais/patologia , Nucleosídeos/uso terapêutico , Reprodutibilidade dos Testes , Transcriptoma , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Neoplasias Renais/patologia , RNA/uso terapêutico
3.
Cells ; 12(5)2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36899826

RESUMO

Metabolomics has expanded from cellular to subcellular level to elucidate subcellular compartmentalization. By applying isolated mitochondria to metabolome analysis, the hallmark of mitochondrial metabolites has been unraveled, showing compartment-specific distribution and regulation of metabolites. This method was employed in this work to study a mitochondrial inner membrane protein Sym1, whose human ortholog MPV17 is related to mitochondria DNA depletion syndrome. Gas chromatography-mass spectrometry-based metabolic profiling was combined with targeted liquid chromatography-mass spectrometry analysis to cover more metabolites. Furthermore, we applied a workflow employing ultra-high performance liquid chromatography-quadrupole time of flight mass spectrometry with a powerful chemometrics platform, focusing on only significantly changed metabolites. This workflow highly reduced the complexity of acquired data without losing metabolites of interest. Consequently, forty-one novel metabolites were identified in addition to the combined method, of which two metabolites, 4-guanidinobutanal and 4-guanidinobutanoate, were identified for the first time in Saccharomyces cerevisiae. With compartment-specific metabolomics, we identified sym1Δ cells as lysine auxotroph. The highly reduced carbamoyl-aspartate and orotic acid indicate a potential role of the mitochondrial inner membrane protein Sym1 in pyrimidine metabolism.


Assuntos
Lisina , Saccharomyces cerevisiae , Humanos , Lisina/metabolismo , Proteínas de Membrana/metabolismo , Metabolômica/métodos , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...